Temporal updating scheme for probabilistic neural network with application to satellite cloud classification - further results
نویسندگان
چکیده
A novel temporal updating approach for probabilistic neural network classifiers was developed by Tian et al. (2000) to account for temporal changes of spectral and temperature features of clouds in the visible and infrared GOES 8 (Geostationary Operational Environmental Satellite) imagery data. In this paper, a new method referred to as moving singular value decomposition (MSVD) is introduced to improve the classification rate of the boundary blocks or blocks containing cloud types with non-uniform texture. The MSVD method is then incorporated into the temporal updating scheme and its effectiveness is demonstrated on several sequences of GOES 8 cloud imagery data. These results indicate that the incorporation of the new MSVD improves the overall performance of the temporal updating process by almost 10%
منابع مشابه
Temporal updating scheme for probabilistic neural network with application to satellite cloud classification
In cloud classification from satellite imagery, temporal change in the images is one of the main factors that causes degradation in the classifier performance. In this paper, a novel temporal updating approach is developed for probabilistic neural network (PNN) classifiers that can be used to track temporal changes in a sequence of images. This is done by utilizing the temporal contextual infor...
متن کاملA multichannel temporally adaptive system for continuous cloud classification from satellite imagery
A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test results for 27 h of continuous classification and updating are presented on a sequence of Geostati...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملComparison of two different PNN training approaches for satellite cloud data classification
Presents a training algorithm for probabilistic neural networks (PNN) using the minimum classification error (MCE) criterion. A comparison is made between the MCE training scheme and the widely used maximum likelihood (ML) learning on a cloud classification problem using satellite imagery data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2001